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SUMMARY

The downward motion of small particles in an isothermal turbulence

free atmosphere has been studied for the case of variable diffusion

coefficient, utilizing twc models. In the first of these, the diffusion

coefficient has been taken as an exponential function of altitude while i
in the second, the variation has been assumed to bec parabolic In the
exponential model an analytic solution for simultaneous diffusion in tke

vertical and horizontal directions has bheen obtained;while for the ‘
parabolic model, an analytic solution for vertical wmotion only has bheen

obtained. The calculations,vhich have been restricted to the exponential

case show the development of a profile of constant shape, all points of

which move with the same velocity, independent of the mass of the particles.

These results, which are derivable from our solution, are in agreement with

the numerical work of Banister and Davis. It is also shown that the

qualitative nature of the results is independent of the initial distribution




CALCUIAT !ON OF THE DiFFJSIGN GF SMALL PART "CLES
IN A NON-UNIFORM ATMOSPHERE

by Milton M Klein and Kwang Y

1. Introduction

In vecert yecars the pregrams of chemical celeases and niciear
expleosicens have stimulated interest in the general problem of diff.cive

moticn of particles in the atmosphere. f(.eneral analytic scl:tices are
not available because of the wvariatic» of densitv (and herce diff ision
coefficient) in the atmosphere Further cemplexity is added tc the
problem because of the general deownward drift dre to the gravitaticnal
field. If the regicn cf intevest is nct toc large the diff:si-n
coefficient may be considered constant; and. fc- the case i nepligitie
drift velocity, standard methcds of solution may ke applied,(])(z) The
effect of a drift velocity has been taken inte acc:i:nt [{or the case cf
constant diffusion and constant drift velecity by Chandvasckhsr whe ses
a change of variable techniqie tc recduce the priblem t > 3 sta~dard cre

(3)

in bheat conductior

An investigaticn of the descent of swall partirles thr~ b a-

exponential atmosphere by rears of pumarical sel ticna of the prve-niag

A 3 . [EA)
equations has recently teen made by Fanister 3nd Davis " The gt dv

was resiticied 1o merien in the vertical plsce Jie i tre striking
results of their work is the change in 2 short time inte-vsl - the

initial density distribution into a ccastant pr file as i descends

through the atmosphere An analytic sclition. mctivated btv this resilt

5) . .. . R . !
has teen develeoped ty Cranzow: ) in the form 5f an jafinite series ci




associated Laguerr polynomials whose coefficients are obtainable from

integrals over the initial distribution.

Because of the general interest in the problem of atmospherice
diffusion and the scarcity of detailed solutions when the wnon uniformity
of the atmosphere is taken 1into account, we have studied the problem in
detail for two models. 1In one of these we have taken the diffusion
coefficient as an exponential function of altitudc while 1n the other
one the variaticn is parabolic. For the sake of simplicity, the atmos:
phere has been zssumed isothermal, The exponentiai mode! is chosen in
accordance with the approximate exponential variation of density of
the atmosphere with altitude and is convenient for wathematical analysis
when considering an infinite or semi-infinitc region. The parabolic
model, while it can be used for a semi-infinite space, is more useful
for a finite region where the analysis for the exponential model becomes

awkward and inconvenient .

We shall restrict ourselves in the present analys:s to the case of
molecular diftusion and therefore will not consider in any detail the
effect of turbulence. Since the atmosphere is reasonably turbuience
free down to altitudes of about 100 km, we may assume our caiculations
are applicable down to 100 km. Any further extension be.ow this altitude
should be examined with extreme care. The effect of a turbulent layer
unon the particle distribution may be analyzed by wmethods similar to the

one presented in Refercice 4.




2. Analysis and Formulation of Model

We consider a non-uniform atmosphere in which the diffusion
coefficient D is a known function of altitude 2 A foreign gas
deposited in the atmosphere will spread in all directions due to
diffusion and will Jdrift downward under the action of the gravitational
field. The drift velocity will bc controlled by the frequency with
which the gas molecules collide with the 2tmosphere. The basic
diffusion equation and the dependence of the drift velocity upon the

collision frequency may be obtained from the Boitzmann Equation

a, oo, oo (a) () o)
FY - e int  © \fL/ ext
3r 3¢ N
where f is the distribution func.ion for the foreign gas, Cis ihe

particle velocity, r the position vector and F the external force per

is the effect upon f due to

56 )

the internal collisions among the gas particles while 5?/ ext is
’

. o &f
unit mass. The collision term <%7 int

the effect due to collisions between the gas and ambient air particles

Since the gas particle density becomes quite low after a short period
. £f

of time, we shall neglect the self-collision term 5t int n

our case, the only external force is the gravitational field which acts

in the negative z direction so that Equation {!) may be written in the

form
3f ., - af Y fex
¢S 2B, e exe 2
dr 3 €
where ¢, is the . ~omponent of the velocity

3




We now obtain our macroscopic equaticns of motion by multiplying

Equation (2) by an appropriate power of the velocity and integrating

over the velocity space. For our purposes it will be sufficient to take

the zeroth and first powers of the velocity. We then obtain

3 S 31 I - :
’Si‘ de + C ;)‘: dc ~ g > dc = I';"r' _!e _ dc (3)
ar Cq \Vt sext.
3f cr e 2N, - (2f o~ o T80 S
[—— cdc -+ ¢ ~— Ydc-g{T—cdec= =" c cc (4)
) At 2; } fooe, Tt Loext
. 3r P 3 .

In Equaticn (3), since integration over velocity is independent of time

and space, we may write

e Y
af 3 | -t/
JatdL ac 1T de=3
fo 2t = fa -
c " —~—=dc¢ 7 c fdcs=73 (" v
- 3r -

- c.=x
r Ik
£ d [ ]
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where the particle density’é and the macroscopic velocity v are defined

by
’5?— fdec v = _ff cdc (5)
J L} (‘?] « (o)

(P24
-

Since the velocity distribution vanishes at the limits, the term in

3
gives zero contribution. The collision integral in Equation (3) may be

d‘

shown to vanish when integrated over the velocity space.

form of Equation (3) therefore gives the usual equation of continuity

37 ;
S'EL + 7 (hv) =0 (6)

=0

The macroscopic
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Tn Equation (4) it is convenient to consider a typ

a typical componeny cf 3, say
¢ and obtain
af =3 €IV
fat%dc"at (v
J[Z-géc_dC-[—’ (c i)e dc
dr
=v»j2c fdc
&
o« o3
fal f f [ a1
8c3 c. de= J_ d <, _Lc d cy >c3 c. d Cy
for & # 3 the integral over d cq gives
2f
f——— ¢c dc, = S =0
J 3c3 3 [ o J_x
For = 3 we get
" 2f o, :
'S—C—B' C3dC3~[L31’ ]fdc2
s
and

%f-—ch—c':-/'fdg=-aﬁ (7)
3

We may, therefore, write Equation (4) in the form

T 10 N - fﬁ V2
St ? o+ 9 (]; y fdce+ gaﬁ *o3 = 5t/ ext. c . dc (8)

Because of the complicated form of

Equation (8), the direct solution of
our problem by means of Eguations (6) and (8) is a formidable task. We

shall, therefore, utilize Equation (8) to give us an approximate expression

for the drift velocity and then solve Equation (6). In Equation (8) we



1

5 . f s
note that <fg€i>ext is provortioned to f and tc the collision frequency

which is a function of a velocity and position. The dependence upon

. . . . : . 6 .
the velocity distribution is quite weak( ) and may bc ignored here; we

may, therefore, write

_r - o~ —~ - —
;K@ﬁ) c dc = s (r,v) fe dec
4:\5t ext. o o

where v is the average value of the collision frequency over the velocity

space. The velocity v is the sum of the diffusion velocity VeD and the
drift velocity v

og. Since, the drift velocity goes te zero for g = 0.

We may identify the drift velocity term on the right-hand side of

Equation (8) with the term containing g on the left side. We therefore

have

88 = T vy, (9)

|
from which

vo[g " (i0)

We now express the velocity v in Equaticn (6) a5 the suw of the

diffusion velocity vy and the drift velocity v and write

a .. v, +1 v) (11)

at



where, for our case, vg has only a z

The diffusion velocity v is given by Fick's law(7)

vy = -D Vn] (12)
where D is the diffusion coefficient.

Je may, therefore, write

Equation (11) in the form

te]

;—aia-v-(ovoyé/)+v'd{;,é)=0(13)

z component V3g’ given by Equation (10).




3. Analysis of the Diffusion Equation

The solution of Equation (13) for the general three-dimensional
case is quite difficult. It is possible to separate Equation (13) into
two equations; one governing the motion in the horizontal plane and
the other governing the motion in the vertical plane, provided we assume
that the coupling betwecen the two motions is weak  The significance of
this approximation and an interprctation of the resulting solutions will
be presented later. A convenient and useful variable whose differential
equation describing the vertical motion is not too complicated is
provided by the particie density integrated with respect to x and vy,
i.e., the number of particles per unit z lecngth To obtain this equation
we first express Equation (13) in cartesian form and, noting that Vg is
a function of z only, obtain

ggi - (D gzl) - g; (D g}é) - %; (b ijz oﬁ) =0 (14)

3z Vg

r»

[o%4

X

Integrating with respect to x and y from -® to 4+« and noting that

éﬁl and g;z vanish at the limits, we obtain

Ax
S W L o s
st "3z Py Vgm0 (13)
where -
o
.o [ (/
..1— J J_cc { axuy

is the number of particles per unit z length. We now look for a solution

where n1 (2z) describes the vertical motion and write




t’fz(x’y’z) = n](z) nZ(XiYaz)

where, since we are assuming veak coupling, n

dependence. Substituting Fquation (16)

2°M o

(D V n,
( nl

+ Vn

2

2

(16)

has only a wcak =

in Eguation (13) yields

-von) +9
g

1

(D oy v nz)

(D ¥n, - vn)

1 g 1

which, by virtue of Equation (15), can be simplified to

N A
n,on

1772
ot

Since D and Vg are functions of z only, we may write Equation (18) in the

scaler form

nlan2 3 o an)
3 2z M e T

fE_ vy,

an

{(Dy— - v
z

3

I3

L

1

D

7

g

nl)

In view of the assumption of weak coupling,

involving the derivatives cf n

v n2) + Von

2

2 with respect to 2 to obtain

(17)

(D ¥ 0y Vgnl)

2
an Ezn 3 n
2 2 2
-—= PDn —_ 4 -
Az 1 2 L2
ax J3y
we may neglect the terms
(20)

Since D is a function of z only, Equation (20) represents the diffusion

of material

in the x-y plane for a constant diffusion coefficient whose

valuc is determined by the particular altitude at which the diffusion

is taking place. A solution of Equation (20) for the case of a source

10

(18)

(19)




8
in the x-y plane is given by(

2 2
N, = Gt exp! B (21)
where « «©
M = _,'[ [ a, dxdy
@ =
is the source strergth Because of the definition of rn, (Equation {10).,.

2

the value of M [or ow case equals unity.

At this point, we consider the significance of the assumption of

s e

vcak coupling i{ ihe motion 1s unzoupled, then 1n a time
diffuse a given amount in the x y plane independent of 1ts downward

mot 1on Actually the particlcs move 1n a curved path roward lower vaiuaes

of the diffusion coefficient so that the extent of travel 1rn the -y
plane is actually less than that obtained under the assumption of no
coupling. Thus, the diffusion front calculated under our assumption of
weak coupling will have a larger extent in the x y direction than the
true diffusion {ront.

The extent of diffusion along the z axis will be

correct since Equation (I5) for this motion is exact.

The three- dimensional diffusion vquation may be treated {rom an

alternative peint of view. We first write Equation (13) in the form
h a5 [0 7
4 = (DI~ - v | ==+ S = 22
2t 3z ( oz g ) l a2 fyz 0 22
l‘- N ~) /

and then Fourier transform Equation (22) with respect to x and v to obtain

t a particle will




o
=3
Q!
o]

i 2 f . . 2 .~ -
3t 37 (D 3 vgn ) D (2" + ")n, =0 (23)

W

N

-
[

where

i - ; i y 2
g T [ / ”f( (t,t exp| 1(x5 4 yM] ex (24)
S g s

and we have made use of the boundary condition Lhat'ﬁﬁ , ox . and 2
vanish at infinity. We pote that for the special case § =~ = 0, the
transformed density function ng reduces to the density aloug the z axis
n (z)} Hence, thc density nl(z) is obtainable as a specizl case of the
Fourier transform function ng We shall work with fquation (23) rather

than Equation (15) and see to whai extent we can solve for the general

three-dimensional density 3@ without appealing to separation of variables

and a perturbation procedure for cbtaining the" diffusion in the horizontal

plane.

At this point, it is convenient to express our equations 1n dimension
.

less form; we therefore set

where L and T are characteristic units of length and time and write

Equation (22) in the form

Y,
A
=

T2 (D 3! L °() .,D_l:_, ﬂ-, _a..?_:rfl_1'=0 (26)
' 2 3z' d?z' T Vg’? LZ K ZJ
y'

/¢
cr
~

ox' J

12




The Fourier trransform of Equation (26) with respect to x' and vy

yields in place of Equation (23)

on on

f T o f DI 2 2 5
T T 3T D—< - Lvn - (& +T"7)n_=0 (27
3t f 2 e
at L° ) dz! dz g f L f

where ne is given by
< 20

= [ r;? (r.t') ex [i(x'a' + '”"")]dx"r'\" (28)

nf - - R £ p = y - -

We shall take the z axis as positive upward so that the drift velocity

vg in Equation {27) is negative We thercfore replace vg by u, where

ug is positive. [t is also convenient tc express ug in terms of D by

noting that, {rom elementary kinetic theory

Yf (29)

where v is the mean thermal speed and : the mean free path Since u

from Equation (10) = g/v, it follows that

‘g 3
_Dﬂ:—% (30)
v
and is constant for an isothermal! atmosphere.

We may then write Equation (27) in the foram

__i. N ;
z “f ]
j L

o/l Ol
4
-

- - - /
_t l < (
-~ T - A
at L oz




2
Noting that v = —;—and = -==

foreign gas and the atmospheric

4. Exponential Distribution

We consider now the analysis of Equation (31) for the case of an
exponential distribution of diffusion coefficient with altitude We

take the origin at the earth's surface and unite

D _ z/H
o= € (32)
o
vhere D 1is a reference value at the origin and B is the scale height
8}

Since we have assumed an isothermal atmosphere, H will be taken as

ronatant

o g 3 | (énf 2, Y] o 2
PR Q)Ez' lexp (Z/H)\ézT + L 500 )0 T oexp (z/H)(z'~ = 1
L v A L

(33)
We note that Equation (33) simplifies considerably with regard to the
coefficients if we take Ii as the unit of length L and HZ/D0 as thc unit

of time T, we then have

\

3 , 2 2
3% nf)’~exp (z') (35 - T )nf=0
v J

(34)

u/' [0
] 3
<l n
ml
o]
]
o]
—~
N
_
N =2
“Irh
-
o]

where m and m are the masses of the
a

molecules; and dropping primes for

convenience for the remainder of Section &4, we may write Equation (34) as

dn on
£.3 f J R
3t az[e..p (,4).__\3z + an;> - exp (z)(§ + 7 )nf = 0 (35)
where a = 2%@ = jgg— measures the ratio of the masses E-.
v oo

a




We now take the Laplacc transform of Equation (35) and obtain

2
2 2

4N + (a+ 1) by + Ja~EZ -7 - poexp (-zﬂ N= n, (z,0) exp (-2)

2 dz f
dz

(36)
o«
where N(z,5,7,p) = ‘[ exp (-pt) nf (z.£,7,t) dt

[}

and nt(z,ﬂ) is the initial density disiribution. 1t

choose for the initial density distribution

is convenient to

a dclta function The

corresponding solution for an arbitrary initial distribution can easily

be obtained by using the solution for the delta function as a Green's

function and integrating over the desired distribution

take initially

where n, is the total number of particles.

transformed initial condition

o«

o«
n
n_(z,0) = [' j’ 28 (z - 2 Yy $ (x - x ) & (y
3 i
f SCRRCEt! © ”
"o
nf(z,o) = ;5 ¢ (z zo) cxXp (1xo; + iy0

Oui differential equation then becomes

We therefore

(37)

We then obtain “or the

.

™ (38)

2
d , N
“‘g + (a + 1) gﬁ <+ [a : §2 ﬁz P exp ('Z)] N
dz “ n
= - —% exp
H

13

(lxog iy M2 b (z zo)

(39

yo) exp (ixT + 1y d<i.




which reduces to

2 r
Q—% + (a - 1) %g +ja- §2 -7 - poexp ! z)] M =-£(z z ) a0
dz . )
by use of
M = o N exp [- iftx 8 -y™ . 2 ]
n ] o] ol
o !
We now change the independent variabie z by 7 - exp -2/2* tc obtain
2 d2M L dM 2 2 2 . -
¢ 5 - (2a - 1) 37+ bla -7 - T - plTaM = 220 8 - L ‘al
dg ° ° °
and further introduce
Q - _;-(a'l)M
to yield
2 5
S I R T A RIS [ IR (42)
vhere
52 - (a - 1.)2 . a(52 X pZ,

Since £ = exp (-2/2). Q is defiued for 0 < L < 1 Ue pow definc
the analytic continuation of Q into the region > 1 by Equation {42}
The right-hand side of Equation (42) is zero at £ = | so that we shall
require Q, its first and second derivatives are continuous at [ = |
and G - 0 as [ - = Thi1s corresponds to the assumption thai the
particle density approacnes zero as o = - = Although the physical
space covers oniy pceitive values of z, the pair*icle densi:y 1s not
significantly affected by the boundary covditiors st z = 0 until the

majority of particies reach ite giound level Furthermore. the presence

of turbulence beclow 100 km renders invalid zny molecular diffusion model

16




below this level and, in addition, the turbulent layer behaves like a

particle sink. We, therefore, expect our present solution to be a good

approximation to the actual situation down to the 100 km level.

We now apply the Hankel transform to Equation (42) and obtain as the

final solution in the transformed space

3 (S,’\
- a * 7
Qs,p) = 2 ¢ A “
© s+ 4p
where x
) =]O ¢ J (s7) Qz,p) dg (s

and we have assumed 7Q and 7Q ¢ as 7 _ o, + Althousi- the actuai

boundary conditions are stated in terms of M. the assumed boundary

conditions imposes no restriction whatsoever, since, if a non trivial

solution satisfying the Q boundary conditions 1s found, 1t automatically

satisfies the M boundary conditions. By the uniqueness theorem for

solutions of parabolic differential equations then 1t 1s guaranteed to

be the only.solutionw

We now consider the inversion of Fquation (43) to obtain ouw solution

in the physical space. Performing the inverse Hankei transform., we obtain

o stc(sg) Jo(sr)
alz,p) = 27 (a'“f =3 N ds

o s + &p

g . =(a+D) 1y .
Qig,p) = g, (a+1) [JS (ZIWJ;Q) Hs(l' (211/550) slg,co?

N
) 1 i
+ g (21'\/;.;0) Hs( ) (21.\/pg) alg - .-;O)J' (45)

where a is the Heaviside step function. The particle depsity function N

17




in the p-plane is then

n N . - —
. o r, P : l-a 1+a . , : (1), C oA,
N(Z,p) = o3 e Pilx 8+ y Mg ! ;Ja(zl\fpo Hy' " (2i%r ) By,

, A QYA -
+ Jg(21ipg ) Hy (2iVpr) a(r - -:O)] (46)

Applying the inverse Laplace transform to N(7,p)

jeie
nf(g’t) - 2ri Tie i N(b,p) exp \Pt) dp, ¢ > 0 (47)

we obtain

)

(] [

,rZ 4 2
% T CE R O R N 2N
ngloD) = e MSeyow g o el et figl 2

. (48)

The particle densityﬁﬁ (r,t) is then given by

-~ hadl
i - [ 0 e i at v vn) dea-
47 J'cc "o f
] = ; ;
= ( dZ exp | -i(x ~ x )7] | a- exp [—i(y -y In|-
— o - 1 - (o]
4 = J e <
2 24
M .o 2rr
0_ 1-a t'1 exp| to !I I/ °20 i (49)
”jt So v Pl t I°3 \ ot /
Setting x - X, =71 cos e, y - Y, = % sin O
(50)
g = g COS o, r = p sin a
and using the integral representation of Jo‘ we have
jm m
dg cxp [—i(x - X )c] /’dm exn[i(y -y )ﬁ]l s )
g N < ¢ o ; 2 . 2
- ° 2o oy &Ez Tan o la- )
= P e S lo(crl ds
o Ve o

18




where 3 = and @ = a - 1. The particle density T?(?;L) may therefore
iy T
be written as

Cw r
- 1-a .l+a , O H
Nex,o) = =3 v expl-——— . [ I
e ¢ ‘o She

2 ,2) N .
“JD qW/QX . Xn + (y - y,) . dp 5D

The integral occurring in Equation (51) is & Hankel transform of
order zero and can easily be evaluated in any particular case As
previously indicated, the one-dimensional soiution nl(z,t) may be obtained

by setting - = " = o 1in the sciution for n,. We then obtain from

Equation (48)

22 .2 .
n 1 Y R > 2:.‘ \
: o . i-a .l+a 0 °% (352
. ny(z,t) = g s 5 exp \-——-——-/ 1 —~— 1 (52)

t / a-1 t//

Some useful information ccncerning the late time history of the

particles may be obtained from the solution for nl(z,t) For liarge

values of t, the Ressel functioa in Equation (52) may be expanded in a

power series; and, upon retention of the leading order term, we obtain as

the asymptotic soluticn for n (z,t)

a
ny (z,t) = —-g-f,-l—s-(——) ( ------ (52a)

The exponential function is ciose to unity for large t so that dependence

of the density function n,
2

upon z and t occurs only through the sinuie

var iable The altitude z is related to the (ime t by

nl'\

.2
s = exp (~2) = ct (52b)

19




where ¢ is a constant which depends upon the density n, and parameters
a, H, and z - We shall find Equations (52a) and (52b) useful in interpreting

the results of the calculations.

20




5. Parabolic Model

We cxamine now the case where the diffusion coefficient is a parabolic
function of altitude; it is convenient to write the diffusion coefficient

in the form
9

\
= 1 (53)
/

Do
D

o N

1 \

1

where b is the altitude at which the gas is released and D, is the reference
A

value of D at thai altitude. Substituting Equation (53) in Equation (31)

yields

=]
=1

(%

~N

i CETIE 1 27,2 2
"—i-li——'txu z Af‘l——%LGf)-—T’:—qz(f"“-i-*')nf=0 (54)
K LS b° ° ©z v L b°

Parallel to the analysis for the exponential case, we now choose b for

2
the unit of length L and g— as the unit of time T, we may then write
1
. Equation (54) in the form
3n ~ /7 3n .
f T2 f 3 2 2(..,2 2
L _l_ e L, 28 ' . ' ; ot _ .
N T30 \u 2 T v2 bz nfl) z <} + = ‘) nf 0 (55)

1f we apply the Laplace transformation to Equation (55), the

inhomogeneous term of the resulting ordinary differential equation is a

delta function. Because of some difficulty in finding the cerresponding

Green's fun cion, we have explored the use of the Lagrange variable

b =_[ nfdz' (56)
(o]

for which the inhomogeneous term 1s a step function. Because of the

21




presence of the <' and T' terms in Equation (55), however, the transformed

equaticn ie an integral rather than differential equation. We have there-

fore restricted ourselves in the present analysis to the density function

1 -t

nl(z,t) along the z axis. Setting &' = 7' = 0 in Equation (54) and

integrate with respect to z', we obtain

\21 a0 My

b (o By 3 ,? %E‘—,\)= 0 (57)
Jt w2 2 3z

\ .2 v /

where

Zl
h = ,[ nl(z',L)dZ' (58)

(o]

and we have imposed the boundary condition that the flux vanishes at

z = 0.

Applying the Laplace transform to Equation (57) and omitting primes

for the remainder of Section 5 yields

L2
2 2
22 ZH 2 359 z 2H pH = -h{z,0) (59)
2 2 3z
dz v
where .
o
H = j’ h(z,t) exp (-pt)dt (60)
o

and h(z,0) is the initial distribution in terms of h. An exact solution

of Equation (59) leads to hypergeometric functicns which introduce some

difficulties in obraining the Laplace inversion We kave, therefore,

, e . 2
simplified Equation (59) by approximating z° in the %% (drift velocity)
C

term by oz where o is a suitable aveirage of z over the interval. Since

te
o




we are interested in values of the altitude above 00 km, we expect the

approximation to be a useful one. We may then write Equation {59) as

29 3
S8 e oy w20 (61)
3z”
= 38 . = .
where © = ~3 L . Solving Equation (61) for the complementary function HO
v
we obtain
m m,
H, = Az + Bz (62)
where m and m, are given b
—
mo=c 4»WJ c +p
m, = ¢ v c2 + p (63)
and ¢ = 1 é = . For the initial distribution, we choosce a delta function
n

at z = 1, —% s(z - 1). The corresponding Lagrange function h is then the
Heaviside step function 8(1). A particular solution H of Equation (61)

for this inhomogenecus term is

3

[ )
H = — 3(1 64
b b (D (64)

and the complete solution H = Ho + H 1is then

T
"
O
N
©
N
o
N
\
p—

(65)

where we have used different constants in the two regions because of the

step function at z = 1.

We consider now the boundary conditions fer our problem. We shall




place perfect reflectors at z = 0 and at an upper level z = d and there-

fore require zere flux at these locations. From Equations /61i) and (64)

the fiux F is given by

b = coast.(mi - n_-(1)» (66)
Py o

In addition, we shall make use of the continuity of n](z,t) and hence of

h(z,t) anc H(z,§) for t ~ 0 at z = 1.

¢ is posinive, the exponent m

require the coefficient B in Equation (b>) to vanich to avoid an infinite

solution at z = C. Application of our boundary and ccntinuity conditions

then yields

5 z , oz < |
2qd 4
(67)
% " ¢ + g ¢, q 2 -q
H=—3+ — 3l 2 (2 ), 2z 1
p P 2ad q
2
vhere q2 = ¢ +p

The inverse Laplace transform of H may then be obtained from a

. 9 .
standard table of inverse Laplace transforms.( ) Several of the inverse

transforms are expressed as Faltung integrals which caa be related to

error furcticns by

z

t
[ 17 exp (-a7) exp (%) s = 3 [exp (2Vab) Frec
5]

&2l

,
-~
il

o,y
-
~—

-exp (-2Vab) Eric (\[E -‘\l;‘t)] (68)
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Since the real part of the parameter

2 in Equation (65) is negative We therefore




Similar relations involving higher powers of —y may be obtained from

N

-

Equation (68) by differentiating with respect to b

nl(z,t) is then obtained from h(z,t) by

R

1 (z,t) =

1

The results obtained mav be expressed as follows:

t=h
Q
2
3]
A
”

1 _’C"l /’ ~
2. - ( z —f— : cI) 69
n, o 4 Tz ~ (69)
I = I1 ] Ig - I3 A [4
/2 b 2 C
7a%). /d\) ,
12 = 'Z——).':.rfc (ao - :21) T,/ Erfc (d-) al)
2\C 2\~c
d y . . N N R
12 -(Z > vrfc (ao + al) ¥ (z i Erfc (a0 - al)
13 = ;-—c— Ex fc (a2 al) - — Erfc (a2 + a,l)
I = — Erfe (a, + L Erec ¢ )
L p rfc ay al) + = rfc (a2 - al
z z
& 2 2\~
zﬁ=cd—cErfc(a J»a)-fc-d—CErfc(a“a)
dz z fo) i z o 1
2 -
22 @) Loy [0, 07 NG
dz z Vnt o I z \F;

- = 1 . BN + : -
c Eifc (aO ! a]) c Erfc (a0 a

1 1 .
3 ° ZC c Erfc (a2 + al) 2_; Erfc (a2 - al)

exp [-(ao - a

1

)

The particle density

1

)
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N
Q/‘ (9]
-
£~
It
{
0 =
lb—-‘
]
Ka)
ot
r i
—~
N
N
N
N’
N
—)
+
—
| —
i
)
i
©

- e Erf <
= Eric (a2 + al) + —c Erfc (a2 - a])

z
L2_ 1, d
o 4t ‘M7
a;’= ct
2 1 1
ST

W

-— C '
J3 = z  Erfc (a2 - al) - 2% Erfe (az' + a[)

.." 'l -
J4 = 2z Erfc (a2 + al) + 2 ¢ Erfe (a2' - al)
J
R S
dz dz
an 31,
z dz 7 dz
3
cJ
s —3 ~-C L Erfc ( ' 1
3z zmc a, + al) - C s Er fc (a2
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i} 3J4 _-c _1_ (ot 2 __c 1 ox r( Cg )2]
g e exp gy a] e~ P a9 1 |
z it 2z {7t ¥
_c [ L e T
+ 2 Erfc (a2 al) — ‘r fc (a2 al)
z Z
21,
a,’ =37 fnz

Although the solution for the parabknlic case has 2 romplicated
analytic form, the asymptotic solution for large t is sufficiently simple

to draw some interesting and useful conclusions. The form of the solution

depends critically upon the value of c¢; for ¢ positive the leading order

term depends upon z but not t; while for c¢ negative, the time-independent

leading order term cancels out and the solution becomes time depeadent

The results obtained for these two cases may be expressed in the form

n .
1 _ 2c _2¢-1

Pl s z , ¢ >0 (71)
o d

n

;l = const. —l; exp (ct), ¢ < 0
o zt”

For ¢ > 0 the solution is in the form of a power law distribution of the

particle density with respect to altitude. This result is due to the

approximation in the drift velocity term; if the approximation had not

been made, we would havc obtained an exponential behaviour similar to

(s

hat cbtaincd in Reference 3. This is not a serious error, however, since

-

ve are not interested in the region z close to zero. We may see the

effect of our approximation more closely by directly solving the




differential equation for large t. Noting that the time derivative

becomes negligible for large t, we may write Equation (54) in the form

3 23" 3gb 2\
S; z SZ_ “ VZ z 0 ) 0 (

=
o
N~

which, upon reting that the flux vanishes for large t, may be integrated

to

2
32 4+ 5z n, = 0 (73

&)

2 dn s
2 g7 = z 0,
n, = Az E (74)
d
Using n, = ,[ nldz to evaluate the constant A, we cbhtain
o
N
- dl—3 %
so that
n . - -
1 -5 -z 2 -
o a ~ d
in agreement with Equation (71). 1f we do not make any approximation

in the drift velocity term, however, we obtain

297 s

b 2
5

YA zZn

g
2
v

n, = const. exp [~é325} (76)
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which is an exponential digtribution similar to that obtained in

Reference 3 for the case of concstant D and constant u

The case of no gravitational field (3 = 0, ¢ = 1/2) yields a
particularly simple result. Setting g = 0 in Equation (73) or dircctly
from Equation (75), we obtain, as anticipated, the uniform distribution

o
n

Q|-

(77)

(o}

<
The case ¢ = 0 is not directly obtainable from Equation (73) since

the drepping of the time derivative is not valid here in the neighborhood

of the origin. This behaviour may be seen clearly from Equation (71)

where we note that n, = 0 for large t except ncar z = 0. We thus have a

piling up of particles at z = 0;and since the total number is constant,
a delta function distribution is obtained for t = * This result is

not of great significance since it is due to our approximation for the
drift velocity term. 1t does show, however, that in a situation where
the gravitational field becomes significantly larger than the diffusion

effect, such a piling up of material may be expected




6. Results

Because of the greater simplicity of results and because of more
immediate applicability to the physical atmosphere, we have contined our
numerical calculaticns to the exponeniia! model In additicn we have
restricted ourselves in the presenl investigation to the one dimensional
density function nl(z,t). Numerical calculations for the three dimen
sional density function (r,t) will be preseated in a futuie investiga

tion. The density function nl(z‘t) is prescnted as a fuaction of alii-
D
tude z/H for several values of the time —g t and the mss: ratio a in
R
Figures 1 through 4. The scale height H was taken 23 20 km and altitude
z
of release QQ as 20 The figures chow that the density profile bccomes

increasingly narrow as a increases, and the maximum value of n, increases

1

with a These results may be anticipated in view of the smaller momentun
changes and consequent lesser dispersion of the heavier particles The
time taken for a given profile to descend to a given altitude is casily
obtained from the figures. As an example, for a = 1 (Figure 1), it takex

D

-2
about 1O ~ units of t for an injection at 400 km tc descend to the

wlo

H
100 km level. For a representative value of D0 = 400 ¢m /sec. the

corresponding physical time is 108 sec or about three yeuars a reason-
able result.

The most striking feature of the density profile is its shifting by
a constant amount as the time pavameter changes, the profile remaining
unchanged i: w. It thus appeavs fiiab, aliter an initiai time perica
required to establishk the profile, all particles move with the samc

velocity. These results have been obtained previously in the numerical

ter and Davis
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The development of a constant profile and its consequences are

easily obtuinable from the relation between r and t given by

by Equaiion (52b;

Fora fixed value of ¢, we may write this relation in the form

,.,
(S

(78)

|
—

where z, and zl arce typical altitudes and t2 and t1 the corresponding

t

the ratio of two consccutive times —
1
has been chosen as 100 so that the corresponding difference z, - z

1 2
A check of Figures 1 through &4 shows that the altitude

times. For our calculations,

= .n 100 = 4.6,

difference between corresponding points on adjacent profiles is always

about 4.6 units. The time required to establish a constant profile is

re
255
. . - . o - B
easily obtained from Fquation {52}, Since the argument ——— OI this
Bessel function must be small enough to yield the constant profile

solution given by Equation (52a), the required time must bc somewhat

larger than ggo,

The velocity of a particle on a typical profile is, from Equation (52b)

~

- = - % = - E;B??ET (79)

so that the velocities of two particles characterized by the same time,
i.e. belonging to the same profilz, are equal. We also note that. since
the expression for the velocity can be written in terms sf t onijy,
particles characterized by different masses will have rhe same limiting
velocities although the corresponding altitudes will be different. This
result may easily be seen by noting that all points on a profile have the

same velocity  This wvclocity is, therefore, obtainable from the velocity




at maximum concertration which is entirely a driit velocity and;

there
fore {see Equation (10:) is independent ¢f mass.
If we write Eguation (32B) in the form
z = - inc - Lat {80)

we see that a plot of z against Znt for a fixed value of ¢ should resuit

E e
ii

astraigut line. Since the constant ¢ enters as an additive term,

lines characterized by Z.fforent values of a wiil be parallel ic each
other The constant ¢ takes on a particularly simple form if the maximum
r2
value of nlis used in Equation (52a) For this case, o
t
a and the lines in the zvs #nt plot are now characterized by different

= a so that here
C:

values of a. This anticipated result is verified in Figure 5 where we have
plotted on semi-log paper the time-altitude history for several values of

a of the maximum concentration points of the profiles in Figures 1 through

4.

The initial distribution chosen by Banister and Davis for their

investigation was a step function; for our case, a delta function was

used. It is easy to show that the foregoing results are independent of

the initial distribution. For a del{ta function, initial distributicn
8(z - zo) the corresvonding solution is the Green's function G(z,zot).
Using the properties of the Green's function, we may write the solution
nl(z,t) corresponding iv any arbitrary inivial distribution f(z) in the
form

6
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= z ,{
J_ £(z) Clz,2 ,t) dz_ (81)

] Using Buaiivn (5Za) we note that for large t, G splits into a product

of a function F of z and t and a function 3 of z ,

| o)
\ G(z,z ,t) ~ F(z,t) o(z ) (82)
o o
‘ We then have for large t,
nl(zst) ®
;; = 1. F(z,t) ?(zo) f(zo) dz0 (83)
\ nl(z.t)
— = A F(z,t) (83a)
o
where =
A = J wlz 3 f(z ) dz (83b)
| o o o

depends only on the parameters H and a. Thus, the solution retains the

same analytic structure in the region of interest, independent of the

initial distribution.

-
|
\
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